Recursive Random Lasso (RRLasso) for Identifying Anti-Cancer Drug Targets

نویسندگان

  • Heewon Park
  • Seiya Imoto
  • Satoru Miyano
  • Xiaodong Cai
چکیده

Uncovering driver genes is crucial for understanding heterogeneity in cancer. L1-type regularization approaches have been widely used for uncovering cancer driver genes based on genome-scale data. Although the existing methods have been widely applied in the field of bioinformatics, they possess several drawbacks: subset size limitations, erroneous estimation results, multicollinearity, and heavy time consumption. We introduce a novel statistical strategy, called a Recursive Random Lasso (RRLasso), for high dimensional genomic data analysis and investigation of driver genes. For time-effective analysis, we consider a recursive bootstrap procedure in line with the random lasso. Furthermore, we introduce a parametric statistical test for driver gene selection based on bootstrap regression modeling results. The proposed RRLasso is not only rapid but performs well for high dimensional genomic data analysis. Monte Carlo simulations and analysis of the "Sanger Genomics of Drug Sensitivity in Cancer dataset from the Cancer Genome Project" show that the proposed RRLasso is an effective tool for high dimensional genomic data analysis. The proposed methods provide reliable and biologically relevant results for cancer driver gene selection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human Cancer Modeling: Recapitulating Tumor Heterogeneity Towards Personalized Medicine

Despite diagnostic, preventive and therapeutic advances, growing incidence of cancer and high rate of mortality among patients affected by specific cancer types indicate current clinical measures are not ideally useful in eradicating cancer. Chemoresistance and subsequent disease relapse are believed to be mainly driven by the cell-molecular heterogeneity of human tumors that necessitates perso...

متن کامل

An Integrative Analysis of Anti-Cancer Drug Response

In this project, we perform an integrative analysis of 24 kinds of anti-cancer drug response on around 400 cancer patients. First, we use Lasso to build a prediction system for each individual drug response. Then a graph Lasso is employed to utilize the correlation between multiple tasks in order to build a more robust prediction system. Finally, we further perform supervised and unsupervised c...

متن کامل

Human Cancer Modeling: Recapitulating Tumor Heterogeneity Towards Personalized Medicine

Despite diagnostic, preventive and therapeutic advances, growing incidence of cancer and high rate of mortality among patients affected by specific cancer types indicate current clinical measures are not ideally useful in eradicating cancer. Chemoresistance and subsequent disease relapse are believed to be mainly driven by the cell-molecular heterogeneity of human tumors that necessitates perso...

متن کامل

Efficient Dimensionality Reduction for High-Dimensional Network Estimation

We propose module graphical lasso (MGL), an aggressive dimensionality reduction and network estimation technique for a highdimensional Gaussian graphical model (GGM). MGL achieves scalability, interpretability and robustness by exploiting the modularity property of many real-world networks. Variables are organized into tightly coupled modules and a graph structure is estimated to determine the ...

متن کامل

Predicting gene targets of perturbations via network-based filtering of mRNA expression compendia

MOTIVATION DNA microarrays are routinely applied to study diseased or drug-treated cell populations. A critical challenge is distinguishing the genes directly affected by these perturbations from the hundreds of genes that are indirectly affected. Here, we developed a sparse simultaneous equation model (SSEM) of mRNA expression data and applied Lasso regression to estimate the model parameters,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015